

Increasing Transport Resilience The ROADAPT framework in practice

Mike Woning

JASPERS Networking Platform Seminar Climate Change Adaptation in the Transport Sector – Experience from Project Preparation and Network Management

Brussels, 6th December 2017

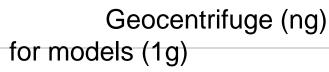
Deltares facts and figures

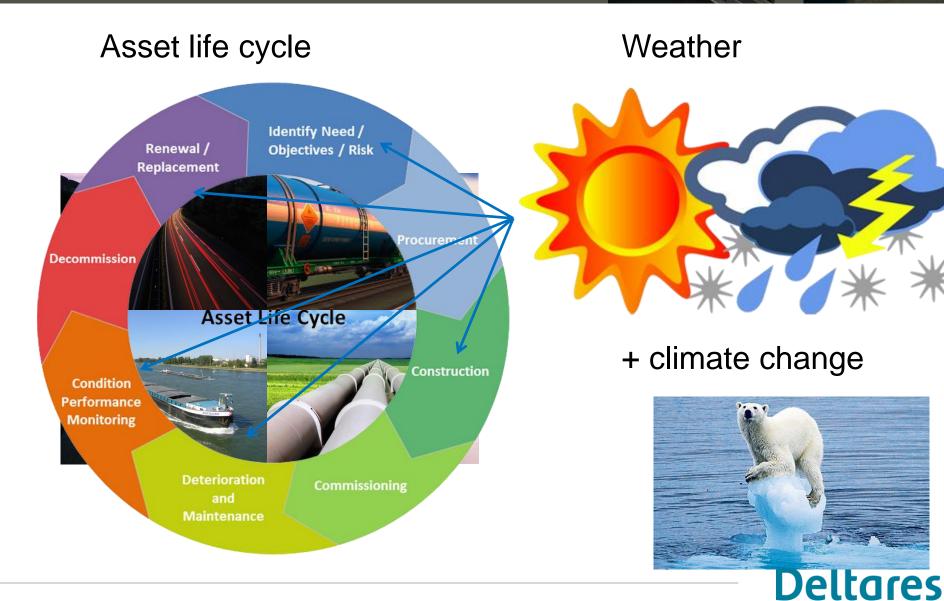
- Legal form: Foundation under Dutch law
- Workforce: 840
- Number of nationalities: 28
- Annual turnover: 113 million euros
- Locations: Delft and Utrecht
- National and international activities
- Unique in-house facilities

Offices and registrations in: India, Singapore, Indonesia, USA, Brazil and UAE

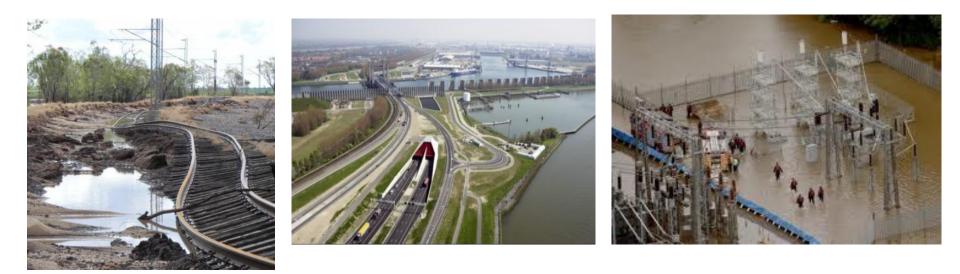
Deltares

Geo-experimental facilities


Advanced geotechnical lab


Microbial en geochemical lab

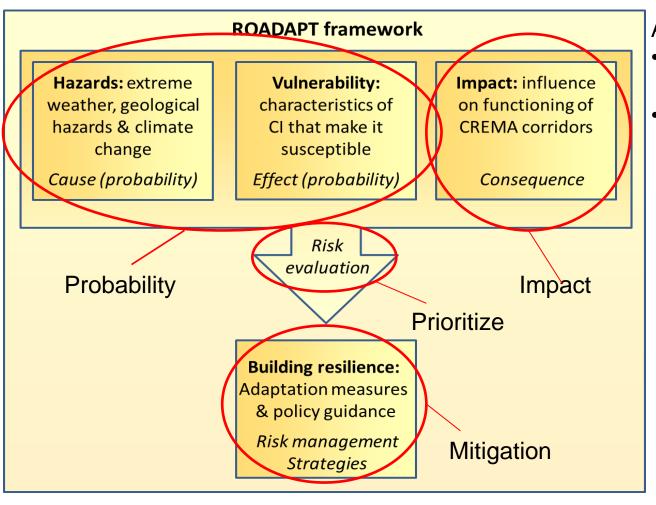
Test laboratorium **Deltores**



Impact of weather and CC on assets

As a result...

- Extreme weather may have **significant impact** on (the use of) infrastructure
- Weather is changing due to climate change: extreme events are becoming extremer and more frequent
- \rightarrow More weather related unwanted events
- \rightarrow Increasing challenges for efficient Asset Management



Goal: share our experience with climate change & infrastructure projects

- Basics of method
- Examples of projects
 - InnovA58, Netherlands; client National Road Authority
 - CREMA contracts, Paraguay; client National Road Authority & World Bank
 - Blue Areas, Netherlands; Prorail
 - Tuzla, Turkey; client Turkey: World Bank, Chamber of Industry
- Questions?

Fundamentals of ROADAPT method

Deltores

Conférence Européenne des Directeurs des Routes Conference of European

Directors of Roads

Approach:

- Use data/ information/ models if present
- Use expert local knowledge if not present (semi quantitative approach)

Deltares

Hazard - cause

Deltares

WATCH project – current research

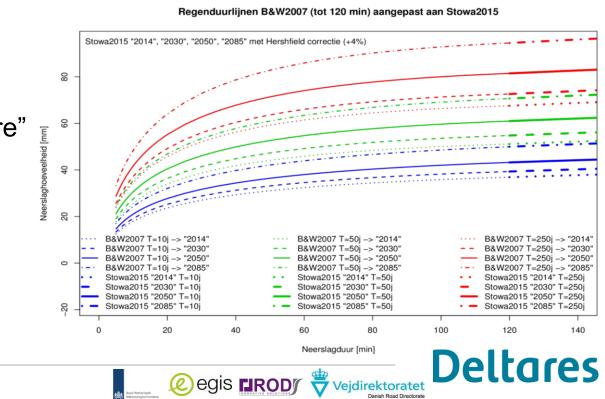
Pluvial flooding

egis **LIROD**

Heavy rain on the road itself

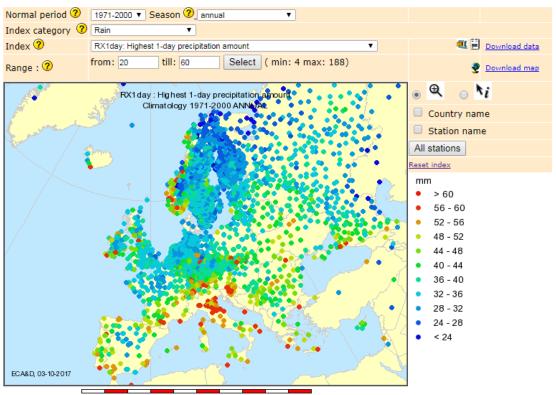
Vejdirektoratet

Danish Road Directorat



Climate change

- Recommendations on how to derive IDF curves for both the current and future climate.
- Including recommendations to overcome the specific challenges of having no information on hourly rainfall data for the future
 - "7% increase of rainfall intensity per one degree increase of dew point temperature"

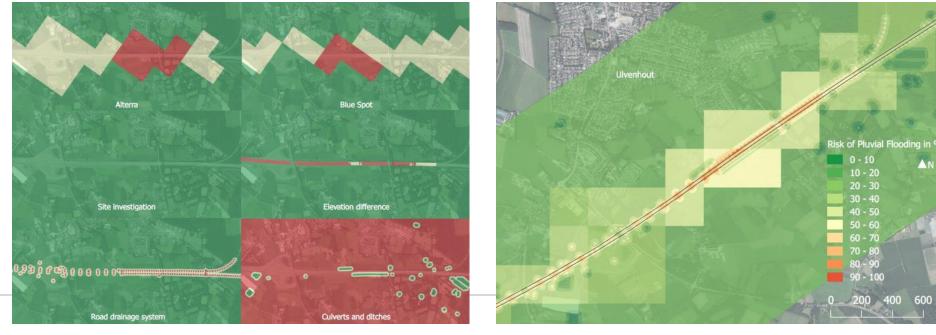

Conférence Européenne des Directeurs des Routes

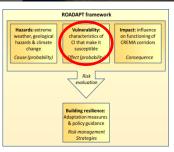
Conference of European Directors of Roads

Climate change – analogues tool

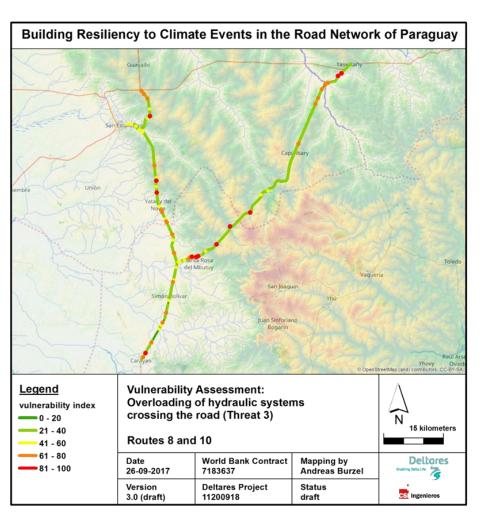
- Climate analogues tool plus guidance has been developed
- Only available for daily and five daily data
- Sub-daily data not available throughout Europe

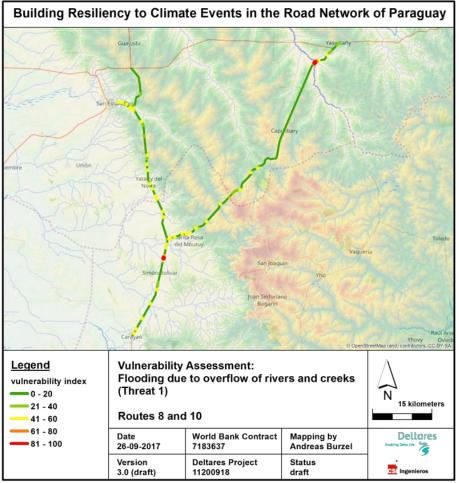
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 km





Vulnerability Assessment - probability


Goal: determine where the threats play a role


- Determine factors that influence the likelihood of a threat occuring (no modelling) in GIS environment
 - Road characteristics
 - Characteristics of surroundings
- Combine vulnerability factors to VA map

VA - Overloading of hydraulic systems crossing the road (threat 3)

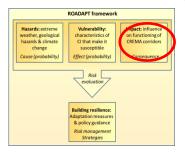
Deltares

Impact - consequence

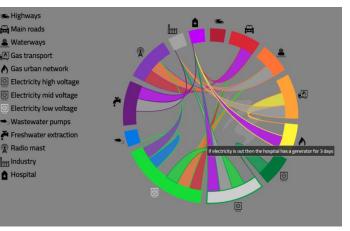
(Workshop) criteria

Impact level	Safety	Availability	Repair cost		
5 (very high)		unavailable for a long period	Inability to pay for extremely high repair costs by MOPC alone		
4		linavallable for a limited	Repair cost exceed the reserves of MOPC		
3		unavailable for a short	Repair cost exceeds yearly budget		
2	Minor injuries	limited period of time (days -	Part of expected exceptional maintenance and repair operations		
1 (very low)	Only material damage	The road is partially available again within hours.	Part of routine maintenance		

		Col	untry				Bu	isines	ss			
		country				Air	Bus	Car, Train		1		
	EU	25 C	ountri	ies)		32.80	1	9.11		23.	32	
	Commute-Short Distance		Commute-Long Distance		Other-Short Distance		Other-Long Distance					
	Air	Bus	Car, train	Air	Bus	Car, train	Air	Bus	Car, train	Air	Bus	Car, train
EU 25 Countries)	12.65	6.10	8.48	16.25	7.83	10.89	10.61	5.11	7.11	13.62	6.56	9.13


Road

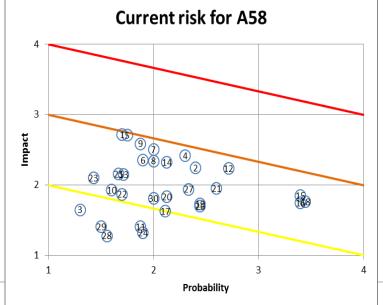
2.98

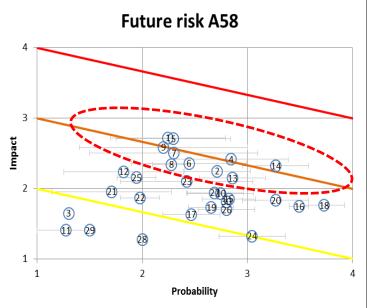

Extra travel time alter	rnative
routes + value of time	e

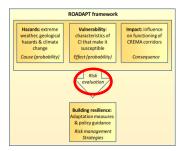
Rail

1.22

Interdependency of critical infrastructures

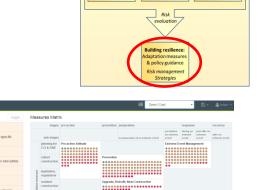



Circle Deltares


Risk Assessment/ Quick Scan - prioritize

Goal: which threats pose the biggest risk

- Identify relevant threats
- Prioritize by collaborative scoring of relevant threats
 - Impact (safety, availability, socio- economic, etc)
 - Current probability (historic events, expert judgement)
 - Determination of future probabilities (climate change)
- Determination of biggest risk threats → priority



Adaptation Strategies - mitigation

Goal: plan measures (best strategy)

Steps:

- Identify (long list of) adaptation measures
 Expert judgement
 - •Workshops
 - Adaptation measures tool
- Prioritize adaptation measures using cost effectiveness Analysis → selection of 'best measures'
- Combine best measures to form Adaptation strategies

Hazards: extreme

weather, geologica

hazards & climate

change

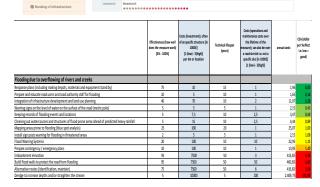
Cause (probabi

ROADAPT framewo

Vulnerability:

haracteristics o

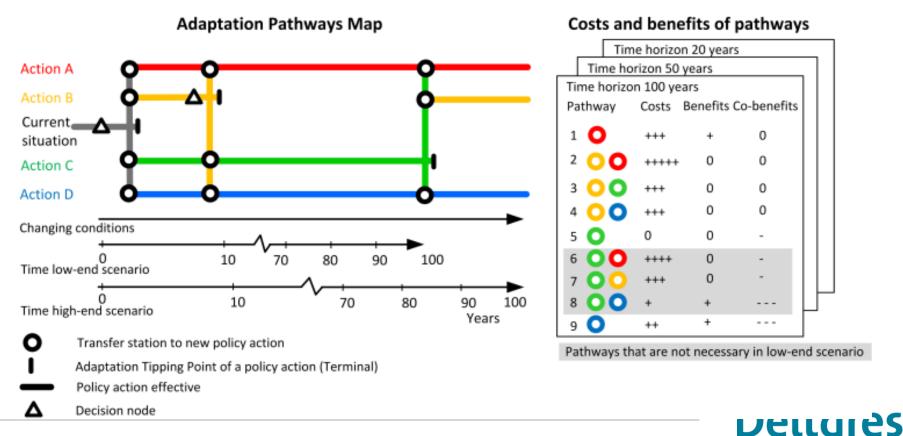
CI that make it

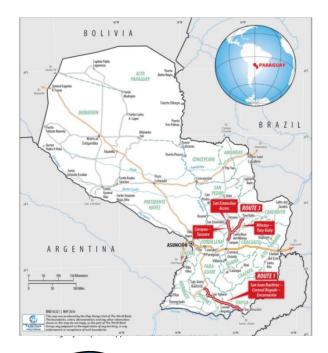

susceptible

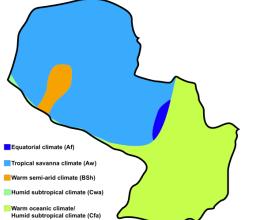
ffect (probabilit

Impact: influence

on functioning o


CREMA corridor




Adaptation Strategies - example

- Combination of best measures/ actions as function of time → Adaptation Strategy
- The map reads like a subway map, taking you from NOW to FUTURE

CREMA contracts, Paraguay – at a glance

- Population: 6.7M
- Tropical subtropical climate
- Landlocked, relies on agriculture and export → roads of vital importance
- El Nino has major impact \rightarrow flooding, erosion
- Goal: provide a risk based, objective approach to help build resilience of road network

Deltares

CSI Ingenieros CSI Ingenieros Sociedad Anónima, Uruguay

An impression of activities

Deskstop study of existing information

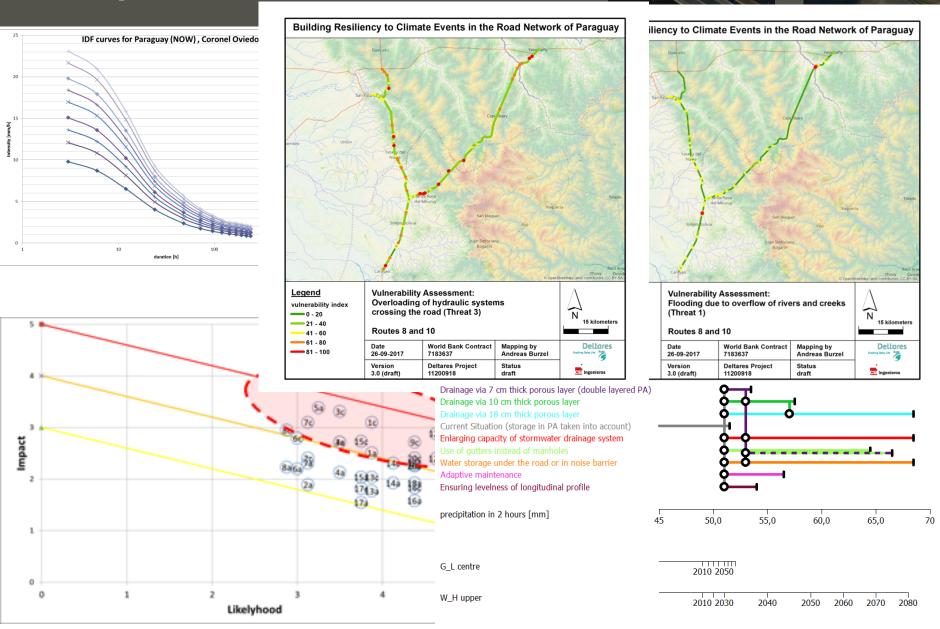
		Total los (US\$)	s Category				
1_1 San Juan Cnel. B	ogado	3.284.176	Low				
1_2 Cnel Bogado- End	carnación	3.342.198	Low				
8_1 Carayao- Mbutuy	3_1 Carayao- Mbutuy						
8_2 Mbutuy - Calle 60	00	4.637.080	High				
10_1 Mbutuy Yasi Cai	ĩу	3.150.366	Low				
-30 -25 -30 -15 -10 -5 0 5 10 15 20 25 30 uente: Economía del Cambio Climático en Paraguay. CEPAL 2014							

- Road/ asset information
- Socio- economic
- Climate information

Site visit

Deltares

CSI Ingenieros CSI Ingenieros Sociedad Anónima, Uruguay


Workshops with local stakeholders

mpacto	Segundad	Disponibilidad	Costo de Reparación
5 (Muy alto)	Varios fallecidos	La carretera queda completamente indisponible por un largo período de tiempo (morses)	Los altos costos de reparación impiden que el MOPC pueda enfrentario con su presupuesto (se necesitan transferencias especiales del gobierno)
4	Fallecido	La carretera queda completamente indisponible por período de tiempo limitado (remana)	El costo de reparación excede el presupuesto de mantenimiento a mediano plazo (se deben hacer transferencias internas de fondos)
3	Lesionados graves		El costo de reparación excede el presupuesto de mantenimiento previsto para ese lugar.
2	Lesionados leves	limitado (días a semanas)	Forma parte del presupuesto de mantenimiento y reparaciones excepcionales
l (Muy Bajo)	Únicamente daños materiales		Forma parte del presupuesto de mantenimiento de rutina

Probabilidad	Descripción				
5 (Alto)	Periodo de Retorno menor a 5 años				
4	5 – 20 años				
3	20 – 50 años				
2	50 – 200 años				
1 (Bajo)	Periodo de Retorno mayor a 200 años				

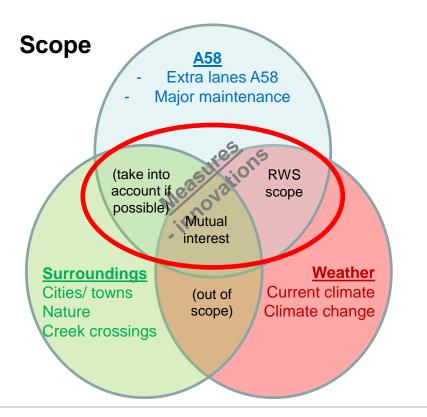
Impression of results

<u> Paraguay – client value</u>

- Provide Adaptation Strategies i.e. various paths for • building resilience for high risk threats
- Provide recommendations for ۲
 - Road Asset Managment System
 - CREMA contracts
 - Alert & response plan
- Training of local authorities
- \rightarrow Subtantiate necessity of funding for alert & response plan
- \rightarrow More security World Bank loan
- \rightarrow Concrete and practical help for MOPC to make Paraguay road network more reslient, safer and reliable

Ingenieros

InnovA58, Netherlands – at a glance

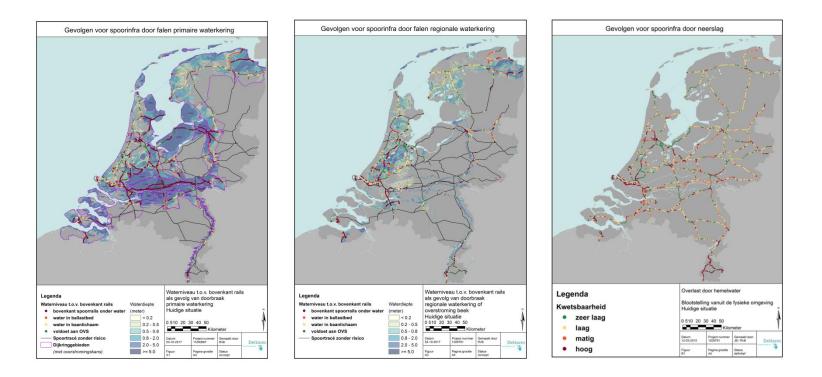


- Approximately 50km highway, important E W connection
- Extra driving lanes planned (now is time to implement changes)
- (Relatively) rural area (flat), some cities/ towns, agriculture, forest/ nature, minor river/ streams
- Goal: find innovative solutions for climate change challenges for road AND surroundings

InnovA58 – an impression

Typical assets

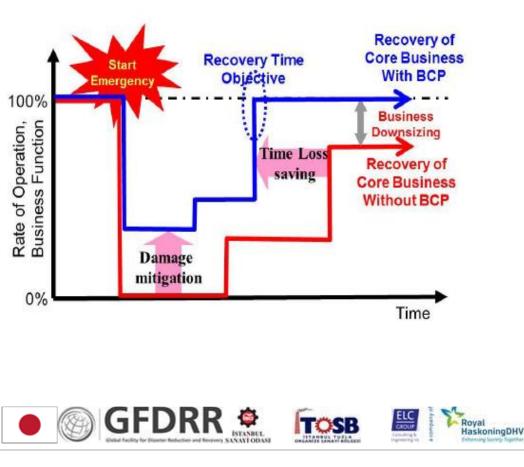
Workshops with stakeholders, scoring of threats

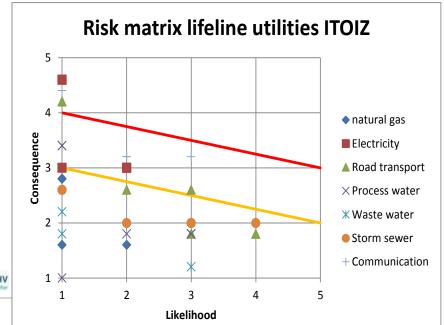

Deltares

InnovA58 – client value

- Provide Adaptation Strategies (i.e. another way of building resilience instead of worst case approach) for high risk threats
- Comparison with Federal Highway Administration tools and methods
- → Collaborative approach with non-road related stakeholders e.g. municipalities, waterboards, nature organisations leading to social acceptance
- → Alternative (and flexibel) solutions to increase climate resilience for regular over-design measures
- \rightarrow Method to include climate change into actual projects

Blue Areas, Netherlands - client value


Vulnerability Assessment of current assets


→ Discussion with National government about acceptable risk levels for flooding
 → Internal process to open discussion about effects of climate change for railways
 → Technical process to evaluate and mitigate pluvial flooding locations

Tuzla – Istanbul – Business continuity planning

Tuzla, Turkey – client value

Results of the project:

- Lifeline Utility risk assessment for natural hazards
 - 7 top risk scenarios
- Business Continuity Plan
 - Plan that addresses measures to increase resilience of the industrialized zone

Value for the client

- Increased competitiveness for industrial zone management
- First example of a BCP for an industrialized zone in Turkey
 - Methodology established
 - To be used for other industrialized zones in Turkey and the world

Conclusions

- Method is widely adaptable for various
 - Climates
 - Hazards
 - Types of infrastructure
 - Available input data
- Results can be used for various reasons
 - Increase climate reslience
 - Better understanding of climate vulnerability
 - Prioritize action list & regions
 - Earmarking of funds
 - Secure (developement) funding
 - Start discussion on responsibilities between organisations

Deltares

Thank you for your attention

More Information

For info or further questions on this seminar and the activities of the JASPERS Networking Platform, please contact the JASPERS Networking and Competence Centre at the following email:

jaspersnetwork@eib.org

JASPERS Website:

jaspers.eib.org

JASPERS Networking Platform:

www.jaspersnetwork.org

